

Distributed Ledger Technology for Decentralization

of Manufacturing Processes

Mauro Isaja

Research & Development Unit

Engineering Ingegneria Informatica (ENG)

Rome, Italy

mauro.isaja@eng.it

John Soldatos

IoT Group

Athens Information Technology (AIT)

Maroussi, Greece

jsol@ait.gr

Abstract — Distributed Ledger Technology (DLT) is probably

going, in the near future, to disrupt B2B and B2C interactions

even more than the advent of the World Wide Web, thanks to the

transfer of trust from personal and commercial relationships to

computing algorithms. However, a less commonly perceived

property of DLT is that of enabler of decentralized computing. In

this paper, we explore the use of DLT to innovate Industrial

Cyber-Physical Systems.

Keywords — DLT; Blockchain; Manufacturing; ICPS;

Decentralization.

I. INTRODUCTION

Today, Distributed Ledger Technology (DLT) – popularly
known as Blockchain – is often perceived as the catalyst of an
IT revolution to come, likened by some to the advent of the
World Wide Web in the nineteen-nineties. The Bitcoin
network, which can be considered as the “killer application”
of DLT, has been dubbed “Internet of Money” [1]. Hype
notwithstanding, the implications of DLT on the growing
connected world can indeed be huge, provided some technical
(e.g., lack of scalability) and non-technical barriers (e.g., lack
of regulation) are removed or lowered. Its better-known
feature is indeed ground-breaking: peer-to-peer trustworthy
and secure transactions on a public network without requiring
trusted intermediaries, or even any form of trust between
parties. Moreover, enabling zero-trust business ecosystems is
not the only arrow in the DLT quiver, as will be discussed
further on.

In recent years, analysts all over the world have identified
a great number of applications that would benefit from – or
even made possible by – the introduction of DLT, the most
common use cases being in the realms of finance, energy,
supply chains and e-government. In this paper, though, we
choose to tread an unconventional path: exploring DLT as
means of decentralization of control over manufacturing
processes. In other words, determine how to exploit the unique
characteristics of this technology to virtualize, flatten out and
open up the centralized/hierarchical automation pyramid [3],
with the final goal of enabling more flexible, secure and robust
Industrial Cyber-Physical Systems (ICPS). This is not an easy
task, as many of the non-functional requirements of ICPS are
pushing the envelope of DLT as we currently know it.

The challenge we are taking is then two-sided: on the one
hand, we need to assess the capabilities of DLT and of its
state-of-art (SotA) implementations, not only in terms of
functionality but also from the perspective of performance and
scalability in ICPS scenarios; on the other, we have to identify
those use cases that are both tractable and promising.

II. THE DISTRIBUTED LEDGER CONCEPT

Generally speaking, a distributed ledger is a “system of
record” that is replicated and kept in-sync across multiple
nodes of a network, where all nodes are peers and no “master”
copy of the ledger exists. More specifically, in concrete DLT
systems the ledger is implemented as a linear sequence of
records that are individually immutable and timestamped. The
sequence itself can only be modified by appending new
records that have been validated by consensus among peers, so
that records are guaranteed to be legitimate and cannot be
censored or retracted after commitment. The integrity of both
records and sequence is protected by means of strong
cryptographic algorithms [12]. Given that both the ledger and
the consensus mechanism are decentralized, the only way of
compromising or putting down a “pure DLT system” (i.e., one
that does not have any single-point-of-failure in its
architecture) is by taking control of a significant number of its
nodes – ranging from N/3 + 1 to N/2 + 1, depending on the
consensus mechanism used, where “N” is the total number of
nodes.

While the potential advantages and pitfalls of such an
architecture are quite clear, it was not until the publishing of
the seminal Bitcoin white paper [2], shortly followed by the
public release of the first Blockchain implementation in 2009,
that DLT has been recognized as a viable approach for
building real-world applications. It should be noted that DLT
and Blockchain are not synonymous: the former is a more
general definition than the latter, which is tied to a specific
technical design where the records on the ledger are blocks,
each containing a group of transactions – i.e., atomic changes
applied to system state. Most DLT implementations of today
are Blockchain-based, two well-known exceptions being FAR-
EDGE project [15]. Whatever the implementation, though, the
individual transaction is always the finest-grained element of
the ledger and, as we will shortly see, the most critical one
with respect to our objectives.

Fig. 1 - Transactions and chained blocks

In legacy Online Transaction Processing (OLTP) systems,
like modern relational databases or even old-school mainframe
applications, committed transactions are final: the only way to
void the effect of a committed transaction is to commit a
second transaction which counters the effects of the first. In
the DLT world, however, this is not always the case, due to
the need of going through a complex and sometimes time-
consuming consensus protocol that may involve the entire
network. Most Blockchains will allow committed transactions
– i.e., transactions included in a block that has been already
appended to the chain – to be discarded because the ledger, as
a whole, was rolled back to some past checkpoint. Events like
this will leave internal consistency intact but make the whole
system nondeterministic from the point of view of external
watchers, as explained in more detail in the next section. At
first sight, this may appear as a fundamental flaw, but actually
many real-world applications can easily live with it. For
example, the transfer of ownership of digital tokens (e.g., a
cryptocurrency like Bitcoin) between two digital wallets
affects the token balance of the involved parties: if for some
reasons the transfer is first approved and then made void, the
balance of both wallets is automatically restored to its
previous value (more correctly, the change never actually
happened). Probably, the same transaction – if legitimate –
will then be repeated successfully. In this case, the use case
works fine enough because it is self-contained: there are no
external side effects that cannot be cancelled. Clearly, this is
not the case when a DLT-based application is in control of a
physical process: a hole drilled in a metal part cannot be
undone because the triggering command was cancelled after
the event.

So this is the first, mandatory requirement for any DLT
platform looking for adoption in smart factory solutions:
finality of transactions. To understand how DLT can meet this
requirement and, most importantly, what is the impact of this
most desired feature on other system properties, we first must
understand in detail what goes on under the hood. Let’s then
have a brief look at the inner workings of a typical
Blockchain.

III. INSIDE THE BLOCKCHAIN

As the name implies, a Blockchain is a sequence of blocks
which are cryptographically sealed and chained together in a
way that ensures that any breach in their integrity can be easily
revealed. Each block contains a number of committed
transactions. Transactions issued by clients but still waiting for
validation are left pending in a system-wide virtual memory
area (often called “mempool”), until a new block is created
and appended to the Blockchain. This happens on a regular
basis (10 minutes average interval in Bitcoin, 15 seconds in
Ethereum) to allow an optimal balance between the needs of
consistency (transactions being properly validated) and of
responsiveness (transactions not taking too long before being
confirmed). The big problem, however, is that there is no
central coordination in place, so which node is going to
validate pending transactions and append the new block? How
the system as a whole will express its agreement, or
disagreement, with the block’s contents? Most importantly,

the entire process should still be possible and reliable in case
some nodes are unresponsive and/or misbehaving.

Decentralized validation of messages is an issue known in
game theory as the Byzantine Generals Problem [4]. Any
decentralized system that implements a concrete solution to
this problem is said to have the property of Byzantine Fault
Tolerance (BFT) [5]. Usually, a concrete BFT solution has
three distinct phases: P1) the system elects a validator node,
P2) the validator node validates the transaction(s), P3) the
system reaches a consensus on the correctness of such
validation, possibly rejecting it if there is no positive
agreement. The critical steps are P1 and P3, because they have
no easy solution in a context where mutual trust is limited or
even not an option at all, like when system nodes are operated
by anonymous entities – which was, we should remember, the
reference scenario in the early days of DLT.

The greatest innovation introduced by Bitcoin – and still
used by most second-generation DLT architectures – is the
Proof of Work (PoW) scheme in conjunction with a system of
economic incentives, to the effect that node owners are turned
into business stakeholders. In practice, there’s a random
cryptographic problem that a node has to solve, by brute
computing force, before all the others in order to gain the right
to validate a new block of transactions. The winner of this race
is the elected validation node (BFT P1, see above). The
validation node will then:

1. Validate all pending transactions according to system

rules and to its knowledge of the current state of the

ledger (BFT P2).

2. Create a new block containing the allegedly valid

transactions, the correct solution of the cryptographic

problem (the proof of the work done) and a link to the

latest block on the chain that is deemed valid (more on

this later, when we discuss how BFT P3 works).

3. Broadcast the new block on the network, so that all

online nodes can update their copy of the ledger

(offline nodes will sync up when they get back online

by retrieving any new blocks from their peers).

4. After the new block is accepted by the system (BFT

P3), receive a price; in cryptocurrency systems, this is

an amount of currency tokens that are created anew

for the purpose, which is why this process is

commonly known as “mining”.

Fig. 1 below shows how a Blockchain ideally looks like,
with all its fundamental elements in place.

Fig. 2 - Blockchain forks

PoW-based BFT has two interesting properties: it is
expensive for nodes to solve the cryptographic problem, and
the chance of winning the race is linearly proportional to the
computing resources invested. This is what being a business
stakeholder actually means: there’s a significant cost in
participating, and profit will come only by strictly adhering to
system rules. However, PoW also has a big downside: it is
extremely resource-intensive and wasteful, as all nodes,
possibly thousands, have to repeat the same heavy work
endlessly, most of the times to no avail. Other mechanisms
have been devised in recent years (e.g., Proof-of-Stake [14]) to
achieve similar results with less adverse effects, but our
analysis is not going to follow this thread as it is not relevant
to the key point of our research: finality of transactions is only
impacted by how the consensus protocol – i.e., BFT P3 – is
designed. To understand why, let’s start by looking at how this
is phase is resolved in our typical Blockchain.

Interestingly enough, BFT P3 starts after a new block of
transactions is written to the ledger (step #4, see above):
consensus takes an indefinite amount of time to consolidate
and the ledger itself is used as a persistent “data bus” during
the process. Initially, no consensus can be assumed: the block
at the head of the chain contains just what the latest validation
node alleges are valid transactions. However, every new block
that is appended is implicitly stating an endorsement: all
transactions in all preceding blocks are valid (step #2, see
above). So what happens when the current validation node
disagrees with the current state of the ledger? In that case, it
will ignore the head of the chain and will instead append the
new block after the latest block that it deems valid. This action
will create a temporary fork in the Blockchain (called “soft
fork”), as represented in Fig. 2 below. The two resulting
branches are, to all effects, alternate and incompatible versions
of reality that must now compete against each other in order
for the “right” one to prevail.

 In the upper half of the above picture, two short-lived

forks have happened. The first time, nodeA appended Block2
after Block1, endorsing both Block 1 and Block 0. Then, when
nodeB became the elected validator, it decided that one or
more transactions in Block2 were not valid. To express its
dissent, it created an alternate version without the offending
data – Block2’ – and appended it after Block1 as well, to
signify endorsement of Block1 and Block0 but not of Block2:
this created a fork. Later on, when nodeC created Block3, it
decided that Block2 was more correct than Block2’, so it
choose to endorse the upper branch of the fork. Over time, this
choice was also endorsed by other nodes, so that the lower

became a dead branch. A similar situation occurred after
Block4, this time with Block5’ emerging as the winner over
Block5. This example is typical, in that the occasional
divergence in how different nodes “see” the common system
state is reconciled quickly with little or no disruption at all. In
some cases, less frequent in practice, the consensus process
may take a longer time to elect the winner branch, as depicted
by the lower half of the picture. Note that there is no guarantee
of correctness implied in this algorithm: there is just the
reasonable assumption that the majority of nodes will, in the
long run, make the best choices.

That said, finality of transactions is not compatible with
Blockchain forks. What we need is a BFT P3 process such that
all stakeholders are able to reach a quick and final agreement
over the network before a transaction is actually saved to the
ledger. At the time of writing and to our knowledge, this
objective cannot be achieved without placing some degree of
trust on some “special” nodes that play a privileged role.
Different architectures have been devised along these lines,
but they all share two common traits: a) nodes have a strong
digital identity, which implies a trusted, centralized identity
provider/manager, and b) there is a neat separation of roles
between transaction validation (still decentralized) and actual
commit, which requires a trusted, centralized queue manager
to serialize validated transactions in a consistent order. Such
DLT architectures are commonly referred to as permissioned
because nodes must receive permission by a central authority
in order to operate according to their assigned role.
Permissioned platforms are typically used to support private
business networks, and have a big advantage over
permissionless, or public, systems: they do not have to rely on
complex and inefficient mechanisms, like PoW, to elect
validation nodes. Such radical simplification may have a
dramatic positive effect on scalability, if not countered by
other bottlenecks. However, we must also clarify that the
“permissioned” quality by itself does not bring any guarantee
of transaction finality: permissioned Blockchains do exist
(e.g., private Ethereum networks) that still rely on forks to
resolve conflicts.

Before delving into SotA analysis, though, in search of
implementations that meet this requirement, we must briefly
discuss another key DLT capability: the support for complex
business logic as an integral part of transaction validation.

IV. DLT AS A COMPUTING PLATFORM

In the previous chapter we saw how, in DLT, each valid
transaction must abide by common rules. More concretely,
these rules are implemented as executable code: a program
that gets its input from the payload of the transaction (i.e., data
provided by the issuing client) and from the current state of
the ledger.

One of the key differences between DLT platforms is how
business logic implemented and managed. First-generation
ones, like Bitcoin and its derivatives, have hardcoded rules
and a fixed data model, on account of being dedicated
cryptocurrency systems. Second-generation platforms as
Ethereum are much more flexible and powerful: custom
business logic and data models can be defined by users in the

form of smart contracts Smart contracts can do what
hardcoded business logic does and also much more – e.g.,
running computations, calling external network services (with
care, as will be explained later) and, most importantly,
produce some output that is saved on the ledger. Their
deployment process is very simple: a transaction that writes
the smart contract’s code to the ledger. This implies that the
code is “sealed” and can be therefore safely executed by any
node of the system. In the Ethereum public network, a well-
proven infrastructure is also in place that prevents misuse of
resources (basically, invoking a smart contract requires the
caller to pay to the network an amount of “local currency” –
the Ether – that is calculated from the actual use of CPU
cycles and ledger storage space). In permissioned platforms,
where a governance entity is in charge, these restrictions do
not apply but smart contract authors must be authorized to
deploy their code.

The strong point of smart contracts is that they turn the
Blockchain – a very solid, secure but “passive” database – into
a distributed service platform. Smart contract-powered
services are akin to serverless cloud architectures (e.g., AWS
Lambda [16]) but inherit some of the best qualities of DLT:
decentralization and robustness. But then, they also get some
bottlenecks from DLT, affecting performance and scalability.
The three main limiting factors are storage inefficiency,
serialization of transactions and confirmation latency.

Storage inefficiency is the obvious drawback of having the
full ledger locally replicated by each and every validation
node in the network; this is a big problem in permissionless
systems with thousands of nodes (e.g., >27000 in the
Ethereum public network), but a lesser issue in permissioned
ones with a few privileged nodes doing all the work.

Unfortunately, serialization of transactions is a bottleneck
that applies equally to any kind of Blockchain. For this reason,
it deserves a few more words of explanation. In OLTP
systems, concurrent data access is managed at the record level:
multiple transactions are executed in parallel if the affected
record sets do not overlap. Conversely, DLT transactions
affect the ledger as a whole, so data updates must be serialized
to prevent conflicts. This feature is also what makes DLT
systems less scalable: adding more computing nodes will not
help coping with increased workload, given that transactions
must still be queued in a single line. New DLT architectures
are emerging that will address the serialization problem in the
future. One of them is the Sharding strategy proposed by
Ethereum, according to which the global ledger can be
partitioned into smaller ones having a narrower scope.
Another example is the Tangle architecture from IOTA, where
individual transactions are linked in a direct acyclic graph [6].
At the time of writing, though, even the most evolved of these
systems are still at the proof-of-concept stage.

Finally, confirmation latency refers to a problem that stems
from BFT: from the point of view of the issuer, a transaction is
only confirmed when approved by the whole system – i.e.,
confirmed by consensus, the third phase of BFT. Now, this
may take a short or a long – sometimes very long – time,
depending on the DLT implementation. If our system does not
support “final” transactions, the only way to be on the safe

side is to wait until a number of blocks are appended after the
block that contains our transaction. How many blocks? It
depends on the system and on the desired level of confidence,
but it is not something that can be determined in objective
terms. In the Bitcoin network, the standard practice is 6
blocks, which amounts to 1 hour time (and this is another
good example of the issues to face when dealing with a
nondeterministic accounting machine). However, as explained
in the previous section, final transactions are those that are
subject to an online consensus protocol and reach the ledger
only after approval. In this context, we can expect a
significantly reduced latency – in the order of magnitude of
milliseconds – as this kind of interaction is little more than a
peer-to-peer poll. Once again, permissioned architectures (a
prerequisite of transaction finality) come to our rescue. That
said, a word of caution: even if we can remove BFT-induced
latency from the picture, DLT will still perform worse than
legacy OLTP systems in terms of raw transaction throughput,
due to the transaction serialization bottleneck.

Having identified all the weak points of DLT, it’s time to
put this knowledge at work. DLT performance is a critical
issue when faced with real-time nature of ICPS. How the two
worlds can cooperate? This question can be decomposed into:

 What is the comfort zone of DLT performance?
I.e., what kind of workloads DLT platforms can
digest without throttling dependent processes?

 What are the typical ICPS scenarios / use cases
that can benefit the most from DLT, but are also
compatible with its limitations?

V. THE DLT COMFORT ZONE

The objective of this study was to set the boundaries of the
so-called DLT comfort zone in terms of a few simple,
objective (i.e., measurable) and high-impact key performance
indicators (KPI), targeting the weak points of DLT:

 Transaction Average Latency (TrxAL) – The
average waiting time for a client to get
confirmation of a transaction, expressed in
seconds. The lower the value, the better.

 Transaction Maximum Sustained Throughput
(TrxMST) – The maximum number of basic
transactions (i.e., no business logic) that can be
processed in a second, on average. The higher the
value, the better.

 Data Replication Factory (DRF) – The average
number of times data items are physically
duplicated on the distributed ledger. The lower
the value, the better.

Of course, this kind of benchmark can be only defined by
putting concrete DLT implementations at test, in a controlled
environment. Due to time and resource constraints, we knew
from the beginning that we could only focus on a very small
number of platforms. We then started with some basic SotA
analysis in order to select the most promising candidates.

First, we drastically reduced the number of platforms to be
assessed by applying a qualitative filter: only major open
source projects, backed by a large and active community of
developers. This criterion cuts down the DLT landscape to just
9 platforms: Bitcon and derivatives, Ethereum, EOS, NEO,
Graphene, IOTA, Hyperledger Fabric, Hyperledger Sawtooth,
R3 Corda. Then, we further pruned our list by excluding those
platforms that do not support transaction finality; this left us
with just two candidates: NEO [17] and Hyperledger Fabric
(HLF) [18].

 For brevity, we omit here the detailed analysis of the
specs of these two platforms, which are very different in all
respects except for their common vocation: supporting
enterprise and cross-enterprise applications. We just want to
mention the consensus protocol implemented, as it’s the key
enabler of transaction finality. NEO is based on an original
Delegated BFT algorithm [7]. HLF also uses its own
algorithm, called SIEVE, based on “classic” Practical BFT [8]
with the addition of speculative execution of validation logic
[9]. The really interesting part of the story is how these
deterministic BFT implementations are performing. Here
below is a summary of our findings – for some of which we in
debt with the BLOCKBENCH team, which developed an open
source stress-test software suite specifically targeted at
Blockchain platforms [10].

TABLE I. KPIS: NEO VS. HLF

It is important to understand the difference between the
two distinct measurements of the TrxMST indicator reported
above. The first, “gross”, is the maximum number of
transactions that can be processed in the time unit regardless
of latency. This value is useful to assess the capabilities of a
platform in general, but what we really need to know is the
maximum throughput within the limits of an ICPS-compatible
latency. In order to determine the maximum acceptable value
of TrxAL in our context, we are forced to adopt some degree
of arbitrariness: we first have to identify a subset of ICPS use
cases that are tractable by DLT, and from there derive generic
TrxAL requirements. Ruling out real-time automation, which
is clearly beyond DLT capabilities, we argue that indirect
control and notarization are the best reference scenarios. Two
concrete examples are factory-wide coordination/orchestration
of local real-time processes and security-related logging,
respectively. In this context, based on professional
experience, we consider a one-second latency to be the upper
limit. This explains the second measurement of the TrxMST
indicator, “fast”, on which the TrxAL <= 1 condition applies.

The DRF indicator is also worth commenting, because it
tells us about the viability of a DLT system in data-intensive
scenarios. Typically, this value reflects a performance
characteristic of a specific deployment, not of a software
implementation in general: in most DLT platforms – NEO and
HLF are no exception – a full copy of the ledger is maintained
by each validation node, so that the DRF value is simply the
number of validation nodes actually deployed.

Having described the reference framework, we can now
analyze our KPI results. These have been obtained on two
equivalent systems: 8 “virtualized” (Docker images)
validation nodes running on low-end server class commodity
hardware.

In the first place, these results tell us that the two platforms
under test, while having similar “gross” processing power,
have very different behaviour with respect to latency. NEO’s
TrxAL is nearly constant, amounting to 7-10 seconds. This is
due to a process that queues up confirmed transactions until a
new block containing them is written to the ledger, which
happens at quite regular intervals regardless of the actual
workload. Instead, HLF’s TrxAL is workload-dependent,
ranging from 0.1 seconds or less under light load but rising to
over 50 seconds when the maximum throughput limit is
reached. If we look at the “fast” TrxMST indicator, though,
we see that HLF is capable of processing 160 transactions per
second with ICPS-compatible latency, while NEO – for the
reason explained above – cannot comply at all.

 When it comes to DRF, both platforms are on par. HLF is
a native permissioned platform, while NEO is a public
platform that can be run in permissioned mode as a private
network; in both cases, networks will always have a limited
number of validation nodes. Using NEO, we can create more
decentralized networks than with HLF, which has a practical
limit of 16 validation nodes before BFT performance starts
degrading (this issue might be solved or mitigated in future
versions of the software). That said, adding more nodes does
not affect scalability: it only improves continuity and
resistance against attacks. The 8-node configuration used in
the test is a good compromise between these qualities and data
storage efficiency.

To conclude, given these KPI results, we can set the
benchmark for ICPS-compatible DLT performance – or, from
the opposite point of view, the boundaries of the DLT comfort
zone – as follows:

 0.1 <= TrxAL <= 1.0

 0 <= TrxMST <= 160

 No restrictions on data storage

This benchmark actually corresponds to the performance
envelope of HLF, which in our study emerged as the only
viable DLT platform (at the time of writing) for use in ICPS
solutions.

VI. DLT AND ICPS: AN EDGE COMPUTING APPROACH

In this last section we introduce some guidelines for the
use of DLT as a key enabling technology of decentralization

 NEO HLF

TrxAL (Transaction Average

Latency)
sec. 7-10 0.1-51

TrxMST (Transaction
Maximum Sustained

Throughput)

gross trx/sec. 1000 1250

fast trx/sec. 0 160

DRF (Data Replication Factor) 8 8

Fig. 3 - FAR-EDGE Reference Architecture

in ICPS. These guidelines represent a novel use of the
blockchain in the industrial space, as they are focused on
large-scale, reliable, plant wide state synchronization rather
than on manufacturing chain traceability and optimization,
which is a common use of DLT in supply chains [13].

As mentioned before, one of the reference scenarios is the
coordination/orchestration of local real-time processes. This
approach is currently being researched by the FAR-EDGE
project [15], which is exploring the edge computing paradigm
applied to factory automation. In particular, the FAR-EDGE
Reference Architecture (RA), depicted in Fig. 3 below, is
based on the concept of a logical layer of Edge Gateways (EG)
that are in charge of Edge Processes – i.e., time-critical and/or
data-intensive computations that are integrated with physical
process on the Field [11].

In FAR-EDGE, EGs are computing devices that are
deployed in close proximity to Field objects, so that any
network bottlenecks are reduced to the bare minimum. This
strategy, however, is also introducing more friction because
local business logic – which is distributed across multiple EGs
– must obey to the global business logic of the
factory/enterprise – which is typically centralized in
ERP/MES systems. Given that one of the objectives of the
project is to virtualize and flatten the hierarchy of the legacy
automation pyramid, FAR-EDGE developed a radically
innovative approach: moving (some of) the global business
logic assets to a new logical layer called Ledger, where they
are implemented as smart contracts and executed on a DLT
platform. These smart contracts are then exposed as Ledger
Services to EG consumers. By means of Ledger Services,
distributed computing processes running on EG devices can
synchronize their state, publish locally-scoped information
that needs to be aggregated on a global scope, etc.

This design is a synergy between edge and serverless
computing, the latter obtained by means of DLT. It achieves
the objectives of decentralization, in particular those related to
flexibility and resilience of production lines, without
introducing performance bottlenecks, as DLT is only used
within the limits of its comfort zone. Moreover, moving
factory-level business logic to the Ledger layer enables even
more advanced scenarios where decentralization is pushed to
the extreme: semi-autonomous Smart Objects on the Field
(tools, machinery, workstations with embedded intelligence)
that are coordinated directly by the Ledger, making the
shopfloor a modular and reconfigurable facility.

While this use of DLT is far from what is commonly
perceived as its main role of “enabler of trust”, it is worth
noting that it allows manufacturing enterprises to deploy their
virtual private cloud on factory premises. This means they can
benefit, to some extent, from a cloud computing architecture
for running critical processes, but at the same time they don’t
have to invest into a cloud computing infrastructure or
outsource to an external provider. DLT will enable more agile
value chains, faster product innovations, closer customer
relationships, and quicker integration with the IoT and cloud
technology.

Acknowledgment

Most of the work reported in this paper was done in the
scope of the FAR-EDGE research and innovation project,
funded by the European Commission’s Horizon 2020 program
under grant agreement n. 723094.

References
[1] A. Antonopoulos, “The Internet of Money”, Merkle Bloom LLC, 2016.

[2] S. Nakamoto (pseudonym), “Bitcoin: a peer-to-peer electronic cash
system”, unpublished, 2008. Retrived from:
https://bitcoin.org/bitcoin.pdf

[3] T. Sauter, S. Soucek, W. Kastner, D. Dietrich, “The evolution of factory
and building automation”, IEEE Industrial Electronics Magazine,
September 2011.

[4] L. Lamport, R. Shostak, M. Pease, “The Byzantine Generals problem”,
ACM Transactions on Programming Languages and Systems, volume 4
n. 3, p. 382-401, 1982.

[5] Z. Zheng, S. Xie, H. Dai, X. Chen, H. Wang, “An overview of
Blockchain technology: architecture, consensus, and future trends”,
proceedings of IEEE 6th International Congress on Big Data, 2017.

[6] S. Popov, “The Tangle”, unpublished, 2017. Retrieved from:
https://iota.org/IOTA_Whitepaper.pdf

[7] NEO Team, "NEO white paper", unpublished, 2017. Retrieved from:
https://github.com/neo-project/docs/blob/master/en-us/index.md

[8] M. Castro, B. Liskov, "Practical Byzantine fault tolerance and proactive
recovery", ACM Transactions on Computer Systems, Vol. 20, No. 4,
2002.

[9] M. Kapristos, Y. Wang, V. Quema, A. Clement, L. Alvisi, M. Dahlin,
“All about Eve: Execute-Verify replication for multi-core servers”,
proceedings of 10th USENIX Symposium on Operating Systems Design
and Implementation, 2012.

[10] T. Dinh, J. Wang, G. Chen, R. Liu, C. Ooi, K. L. Tan,
“BLOCKBENCH: a framework for analyzing private Blockchains”,
unpublished, 2017. Retrieved from: https://arxiv.org/pdf/1703.04057.pdf

[11] M. Isaja, “FAR-EDGE achitecture and components specifications”,
unpublished, 2017. Retrieved from: https://goo.gl/5SnG36

[12] H. Halpin, M. Piekarska, "Introduction to Security and Privacy on the
Blockchain," IEEE European Symposium on Security and Privacy
Workshops (EuroS&PW), Paris, 2017, pp. 1-3.

[13] T. Ahram, A. Sargolzaei, S. Sargolzaei, J. Daniels, B. Amaba,
"Blockchain technology innovations," IEEE Technology & Engineering
Management Conference (TEMSCON), Santa Clara, CA, 2017, pp. 137-
141.

[14] Proof-of-Stake, wiki article: https://en.bitcoin.it/wiki/Proof_of_Stake

[15] FAR-EDGE project web site: http://www.faredge.eu/

[16] AWS Lambda web site: https://aws.amazon.com/lambda/

[17] NEO project web site: https://neo.org/

[18] Hyperledger Fabric project web site:
https://www.hyperledger.org/projects/fabric

